NB+C Engineering Services
Rooftop Structural Analysis
Prepared for T-Mobile: L700 4x2 Installation

SITE INFORMATION

Address	301 Maple Ave West
	Vienna, VA 22180
	Lat: 38.897942°
	Long: -77.270294
T-Mobile Site Number	7WAC050A
T-Mobile Site Name	White Oak Tower
NB+C Project Number	100291
Date	June 15, 2020

TABLE OF CONTENTS

1.0 INTRODUCTION 3
2.0 APPURTENANCES LOADING 3
Table 1 - Proposed Antenna and Cable Information 3
Table 2 - Existing/Final Antenna and Cable Information 3
3.0 ASSUMPTIONS 3
4.0 APPLICABLE CODES AND STANDARDS 4
5.0 ANALYSIS 4
6.0 CONCLUSIONS \& RECOMMENDATIONS 4
APPENDIX A: PLAN AND ELEVATION 6
APPENDIX B: CALCULATIONS 6

1.0 INTRODUCTION

The existing structure is a $81^{\prime}-6{ }^{\prime \prime}$ tall building located in Vienna, VA.
T-Mobile has proposed to reconfigure the site and install new antennas as shown in the table below. A structural analysis was performed to see if the new loads are safely supported by the roof structure and to verify if the existing structure is in compliance with the applicable codes and standards. Information we have received and used for this analysis includes:

- RFDS provided by T-Mobile dated May 01, 2020
- Site Audit Photos dated September 04, 2019
- Construction Drawings by NB+C Engineering Services, dated June 10, 2020

2.0 APPURTENANCES LOADING

As per the information provided to us, the following tables show the final and existing antenna and equipment installation by T-Mobile.

Table 1 - Proposed/Final Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}\right\|$	Antenna Manufacturer	Antenna Model	Carrier	Feed Line Size (in)	Note
$\begin{aligned} & 74^{\prime}-0 "{ }^{\prime \prime} \\ & 79^{\prime}-0^{\prime \prime} \end{aligned}$	$\begin{aligned} & 74^{\prime}-0 " \prime \\ & 79^{\prime}-0^{\prime \prime} \end{aligned}$	4	RFS	APXVAAR24 43-U-NA20 (95.9"x24.0"x8.7", 128.01bs)	T-Mobile	(4) 6×12 Hybrid (6) 1-1/4" Coax	-
		4	Ericsson	Radio 4449 B71 + B85 (13.4"x16.5"x5.9", 46.0lbs)			
		2	Ericsson	KRY 112 489/2 $\left(11.0 " \times 6.1 " \times 3.9^{\prime \prime}, 15.4 \mathrm{lbs}\right)$			

Table 2 - Existing Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Carrier	$\begin{array}{\|l\|l} \text { Feed Line } \\ \text { Size (in) } \end{array}$	Note
$\begin{aligned} & 74^{\prime}-0 " \\ & 79^{\prime}-0 " \end{aligned}$	$\begin{aligned} & 74^{\prime}-0 "{ }^{\prime \prime} \\ & 79^{\prime}-0 \end{aligned}$	4	Ericsson	AIR32DB B66A/B2A	T-Mobile	(4) 6×12 Hybrid ${ }^{1}$ (6) $1-1 / 4$ " Coax ${ }^{1}$ (4) $7 / 8$ " Coax ${ }^{2}$	1
		2	Andrew	TMBXX-6516-A2M			
		2	Commscope	SBNHH-1D65C			2
		4	Ericsson	KRY 112 489/2			
		2	-	Twin Style 1B			1

Note:

1. Existing equipment to remain.
2. Existing equipment to be removed, was not considered in this analysis.

3.0 ASSUMPTIONS

This report is based on the theoretical capacity of the existing structural elements and is not an assessment of the overall suitability of the existing Structure or its components for any particular use other than specified here in this report:

- This report makes no warranties, expressed and/or implied, and disclaims any liability arising from material, fabrication and erection of the existing Structure and any other existing or proposed components or appurtenances.
- All proposed and existing antennas, mounts, coaxial cables and appurtenances are assumed to be properly installed and configured according to manufacturer requirements.
- All existing structural elements are assumed to be in place and in good condition, and were previously designed and constructed in accordance with applicable codes and standards.
- Existing anchorage to penthouse wall assumed to be $1 / 2$ " diameter threaded rods with Hilti HY70 adhesive and $31 / 8^{\prime \prime} \mathrm{min}$. embedment.
- Contractor to verify existing site condition including the existing structure prior to fabrication and construction. In the event the existing structure conditions are different than the assumptions made in this report, this has to be brought to the structural engineer's attention before proceeding any further with bidding, fabrication and/or erection.

4.0 APPLICABLE CODES AND STANDARDS

The existing structure was analyzed/designed per the provisions of following applicable codes and standards:

- 2015 Virginia Construction Code
- ANSI/TIA-222-G - Structural Standards for Antenna Supporting Structures and Antennas
- Minimum Design Loads for Buildings and Other Structures ASCE/SEI 7-10
- AISC Manual of Steel Construction, $14^{\text {th }}$ Edition - ANSI/AISC 360-10

5.0 ANALYSIS

Design Loads:

- Ultimate wind speed: 115 mph
- Occupancy Category: II
- Exposure: B

Load Combinations:

-D

- D + L
- $D+0.6 W$
- 0.6D + 0.6W

6.0 CONCLUSIONS \& RECOMMENDATIONS

The proposed appurtenances to are to be supported on the proposed $2.5 \mathrm{SCH} 40 \times 11^{\prime}-\mathbf{0}^{\prime \prime}$ LG mount pipes anchored to the penthouse walls. Refer to construction drawings prepared by NB+C ES for the proposed location of the appurtenances, and the supporting mounts.

Based on the performed analysis of this structure for applied gravity and lateral loads, the existing/proposed pipe mounts and anchorage are adequate to support the proposed T-Mobile appurtenances. The existing mount pipe was stressed to 6.40% of its capacity, the proposed mount pipe was stressed to 16.40% of its capacity, the existing wall mount angles were stressed to 23.60% of their capacity, and the existing anchorage was stressed to 41.0% of its capacity.

The proposed antenna installation represents an insignificant increase in gravity and lateral loads on the overall structure, therefore the installation is deemed acceptable by engineering judgement.

The conclusions reached by NB+C ES in this report are only applicable for the previously mentioned existing structural members supporting the T-Mobile equipment. Further, no structural qualification is made or implied by this report for existing structural members not supporting the T-Mobile equipment.

NB+C ENGINEERING SERVICES, LLC
Prepared by: Yaw O. Bonsu, E.I.T.
Respectfully Submitted by:
Krupakaran Kolandaivelu, P.E.
Chief Engineer - Structural
VA PE License \# 49792

APPENDIX A:
PLAN AND ELEVATION

APPENDIX B: CALCULATIONS

NB+C ES	Structural Analysis	1
6095 Marshalee Drive	T-Mobile Site:	$5 / 27 / 2020$
Suite 300	7WAC050A	NB+C ES No: 100291
Elkridge, MD 21075		

PURPOSE

The purpose of these calculations is to structurally qualify the existing/proposed antenna mounts for support of the proposed T-Mobile apurtenances.

Site Information:

Site Number: 7WAC050A
Address: 301 Maple Avenue West, Vienna, VA 22180

1) Antenna Mount Analysis:

Wind Loads:

Occupancy Category: II

Exposure:	Exp $:=" B "$
Topographic Factor:	$\mathrm{K}_{\mathrm{zt}}:=1.0$
Wind Directional Factor:	$\mathrm{K}_{\mathrm{d}}:=0.85$
Gust Effect Factor:	$\mathrm{Gu}:=0.85$
Basic Wind Speed (mph):	$\underset{\mathrm{Wi}}{\mathrm{V}}:=115$

ASCE/SEI 7-10 Reference

Table 1.5-1, pg. 2

Section 26.7.3, pg. 251

Section 26.8.2, pg. 254

Table 26.6-1, pg. 250

Section 26.9.1, pg. 254
Figure 26.5-1 A-C, pgs. 247-249

Equipment Mid HeightAGL (ft): $\quad \mathrm{h}_{1}:=79$
Velocity Pressure Coefficient:
$\mathrm{z}_{\mathrm{g}}:=\left\lvert\, \begin{aligned} & 1200 \text { if } \operatorname{Exp}=" \mathrm{~B} "=1200 \\ & 900 \text { if } \operatorname{Exp}=" \mathrm{C} " \\ & 700 \text { if } \operatorname{Exp}=" \mathrm{D} "\end{aligned} \quad\right.$ Table 26.9-1, pg. 256

$$
\alpha:=\left\lvert\, \begin{aligned}
& 7 \text { if } \operatorname{Exp}=" \mathrm{~B} " \quad=7 \\
& 9.5 \text { if } \operatorname{Exp}=" \mathrm{C} " \\
& 11.5 \text { if } \operatorname{Exp}=" \mathrm{D} "
\end{aligned}\right.
$$

$\mathrm{K}_{\mathrm{z}}:=2.01 \cdot\left(\frac{\mathrm{~h}_{1}}{\mathrm{z}_{\mathrm{g}}}\right)^{\frac{2}{\alpha}}=0.924$

Velocity Pressure (psf):
$\mathrm{q}_{1 \mathrm{z}}:=0.00256 \cdot \mathrm{~K}_{\mathrm{z}} \cdot \mathrm{K}_{\mathrm{zt}} \cdot \mathrm{K}_{\mathrm{d}} \cdot \mathrm{V}^{2}{ }^{\mathrm{psf}}$
$\mathrm{q}_{1 \mathrm{z}}=26.59 \cdot \mathrm{psf}$

Table 29.3-1, pg. 310

Equation 29.3-1, pg. 307

Antenna Dimensions:

	Antenna 1: APXVAARR24_43	TMBXX 6516	$\frac{\text { RRU 1: }}{4449 \text { B71+B85 }}$
Antenna Height	$\mathrm{h}_{\text {mu }}:=95.9 \mathrm{in}$	$\mathrm{h}_{2 \times 2}:=59.8 \mathrm{in}$	$\mathrm{h}_{5}:=14.9 \mathrm{in}$
Antenna Width	$\mathrm{w}_{1}:=24 \mathrm{in}$	$\mathrm{w}_{2}:=12.0 \mathrm{in}$	$\mathrm{w}_{5}:=13.2 \mathrm{in}$
Antenna Depth	$\mathrm{d}_{1}:=8.7 \mathrm{in}$	$\mathrm{d}_{2}:=6.5 \mathrm{in}$	$\mathrm{d}_{5}:=10.4 \mathrm{in}$
Antenna Weight	$\mathrm{m}_{\text {ant1 }}:=128 \mathrm{lbf}$	$\mathrm{mant} 2:=34.6 \mathrm{lbf}$	$\mathrm{m}_{\text {rru1 }}:=741 \mathrm{bf}$
Wind Area Front	$\mathrm{A}_{1 \mathrm{f}}:=\mathrm{h}_{1} \cdot \mathrm{w}_{1}$	$\mathrm{A}_{2 \mathrm{f}} \mathrm{:}=\mathrm{h}_{2} \cdot \mathrm{w}_{2}$	$\mathrm{A}_{5 \mathrm{f}}:=\mathrm{h}_{5} \cdot \mathrm{w}_{5}$
Wind Area Side	$\mathrm{A}_{1 \mathrm{~s}}:=\mathrm{h}_{1} \cdot \mathrm{~d}_{1}$	$\mathrm{A}_{2 \mathrm{~s}} \mathrm{l}=\mathrm{h}_{2} \cdot \mathrm{~d}_{2}$	$\mathrm{A}_{5 \mathrm{~s}}:=\mathrm{h}_{5} \cdot \mathrm{~d}_{5}$
Aspect Ratio	$\text { Aspect }_{1 \mathrm{f}}:=\frac{\mathrm{h}_{1}}{\mathrm{w}_{1}}=4$	$\text { Aspect }_{2 \mathrm{f}}:=\frac{\mathrm{h}_{2}}{\mathrm{w}_{2}}=5$	$\text { Aspect }_{5 \mathrm{f}}:=\frac{\mathrm{h}_{5}}{\mathrm{w}_{5}}=1.1$
	$\text { Aspect }_{1 \mathrm{~s}}:=\frac{\mathrm{h}_{1}}{\mathrm{~d}_{1}}=11$	$\text { Aspect }_{2 \mathrm{~s}}:=\frac{\mathrm{h}_{2}}{\mathrm{~d}_{2}}=9.2$	$\text { Aspect }_{5 \mathrm{~s}}:=\frac{\mathrm{h}_{5}}{\mathrm{~d}_{5}}=1.4$
Antenna Height	$\frac{R R U \text { 2: }}{\text { KRY } 112}$		
Antenna Width	$\mathrm{h}_{6}:=11.0 \mathrm{in}$		
Antenna Depth	w_{6} : $=6.1 \mathrm{in}$		
Antenna Weight	$\mathrm{d}_{6}:=3.9 \mathrm{in}$		
Wind Area Front	$\mathrm{m}_{\text {rru2 }}:=15.4 \mathrm{lbf}$		
Wind Area Side	$\mathrm{A}_{6 \mathrm{f}}:=\mathrm{h}_{6} \cdot \mathrm{w}_{6}$		
	$\mathrm{A}_{6 \mathrm{~s}}:=\mathrm{h}_{6} \cdot \mathrm{~d}_{6}$		
Aspect Ratio	$\text { Aspect }_{6 \mathrm{f}}:=\frac{\mathrm{h}_{6}}{\mathrm{w}_{6}}=1.8$		
	$\text { Aspect }_{6 \mathrm{~s}}:=\frac{\mathrm{h}_{6}}{\mathrm{~d}_{6}}=2.8$		

${ }^{\square}$ Force Coeff front
$\mathrm{C}_{\mathrm{flf}}=1.35 \quad \mathrm{C}_{\mathrm{f} 2 \mathrm{f}}=1.37 \quad \mathrm{C}_{\mathrm{f} 3 \mathrm{f}}=1.37 \quad \mathrm{C}_{\mathrm{f} 5 \mathrm{f}}=1.3$
$\mathrm{C}_{\mathrm{f} 1 \mathrm{~s}}=1.53 \quad \mathrm{C}_{\mathrm{f} 2 \mathrm{~s}}=1.47 \quad \mathrm{C}_{\mathrm{f} 3 \mathrm{~s}}=1.47 \quad \mathrm{C}_{\mathrm{f} 5 \mathrm{~s}}=1.31$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{f} 6 \mathrm{f}}=1.31 \\
& \mathrm{C}_{\mathrm{f} 6 \mathrm{~s}}=1.33
\end{aligned}
$$

Wind Loads on Antennas:

Antenna 1:

APXVAARR24_43	$\frac{\text { Antenna 2: }}{\text { TMBXX 6516 A2M }}$
$\mathrm{W}_{\mathrm{f} 1}:=\mathrm{q}_{1 \mathrm{z}} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{f} 1 \mathrm{f}} \cdot \mathrm{A}_{1 \mathrm{f}}$	$\mathrm{W}_{\mathrm{f} 2}:=\mathrm{q}_{1 \mathrm{z}} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{f} 2 \mathrm{f}} \cdot \mathrm{A}_{2 \mathrm{f}}$
$\mathrm{W}_{\mathrm{f} 1}=487.6 \cdot \mathrm{lbf}$	
$\mathrm{W}_{\mathrm{s} 1}:=\mathrm{q}_{1 \mathrm{z}} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{f} 1 \mathrm{~s}} \cdot \mathrm{~A}_{1 \mathrm{~s}}$	$\mathrm{~W}_{\mathrm{f} 2}=153.9 \cdot \mathrm{lbf}$
$\mathrm{W}_{\mathrm{s} 1}=200.9 \cdot \mathrm{lbf}$	$\mathrm{W}_{\mathrm{s} 2}:=\mathrm{q}_{1 \mathrm{z}} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{f} 2 \mathrm{~s}} \cdot \mathrm{~A}_{2 \mathrm{~s}}$
	$\mathrm{~W}_{\mathrm{s} 2=89.9 \cdot \mathrm{lbf}}$

RRU 1:
4449 B71+B85
$\mathrm{W}_{\mathrm{f} 5}:=\mathrm{q}_{1 \mathrm{z}} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{f} 5 \mathrm{f}} \cdot \mathrm{A}_{5 \mathrm{f}}$
$\mathrm{W}_{\mathrm{f} 5}=40.2 \cdot \mathrm{lbf}$
$\mathrm{W}_{\mathrm{s} 5}:=\mathrm{q}_{1 \mathrm{z}} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{f} 5 \mathrm{~s}} \cdot \mathrm{~A}_{5 \mathrm{~s}}$
$\mathrm{W}_{\mathrm{s} 5}=31.8 \cdot \mathrm{lbf}$

Equation 29.5-1, pg. 308
RRU 2:
KRY 112 489/2
$\mathrm{W}_{\mathrm{f} 6}:=\mathrm{q}_{1 \mathrm{z}} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{f} 6 \mathrm{f}} \cdot \mathrm{A}_{6 \mathrm{f}}$
$\mathrm{W}_{\mathrm{f} 6}=13.8 \cdot \mathrm{lbf}$
$\mathrm{W}_{\mathrm{s} 6}:=\mathrm{q}_{1 \mathrm{z}} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{f} 6 \mathrm{~s}} \cdot \mathrm{~A}_{6 \mathrm{~s}}$
$\mathrm{W}_{\mathrm{s} 6}=9 \cdot \mathrm{lbf}$

Wind Loads Mount Members:
Equation 29.5-1, pg. 308

Member:	2.0" STD Pipe	2.5 " STD Pipe
Width:	$\mathrm{w}_{\mathrm{p} 2}:=2.375$ in	$\mathrm{w}_{\mathrm{p} 25}:=2.875$ in
Force Coeff.	$\mathrm{C}_{\mathrm{fp} 2}:=1.2$	$\mathrm{C}_{\mathrm{fp} 25}:=1.2$
Wind Load:	$\mathrm{F}_{\mathrm{p} 2}:=\mathrm{q}_{1 \mathrm{z}} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{fp} 2} \cdot \mathrm{w}_{\mathrm{p} 2}$	$\mathrm{~F}_{\mathrm{p} 25}:=\mathrm{q}_{1 \mathrm{z}} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{fp} 25} \cdot \mathrm{~W}_{\mathrm{p} 25}$
	$\mathrm{~F}_{\mathrm{p} 2}=5.4 \cdot \mathrm{plf}$	$\mathrm{F}_{\mathrm{p} 25}=6.5 \cdot \mathrm{plf}$

Antenna Mount Frame Analyzes:

Refer to attached RISA 3D output.

Check Connections

The existing connections are composed of 1/2" threaded rods in Hilti HY-70 adhesive (3 1/8" embed.), assumed per site photos.

Hilti HY-70 Techinical Guide:

Spacing:	$\mathrm{s}_{\mathrm{b}}:=8 \mathrm{in}$
Max Tension Strength:	$\mathrm{N}_{\mathrm{n}}:=905 \mathrm{lbf}$
Max Shear Strength:	$\mathrm{V}_{\mathrm{n}}:=1685 \mathrm{lbf}$
Total Tension Strength:	$\mathrm{T}:=\mathrm{N}_{\mathrm{n}}=0.91 \cdot \mathrm{kip}$
Total Shear Strength:	$\mathrm{V}:=\mathrm{V}_{\mathrm{n}}=1.69 \cdot \mathrm{kip}$

NB+C ES	Structural Analysis	4
6095 Marshalee Drive	T-Mobile Site:	$5 / 27 / 2020$
Suite 300	7WAC050A	NB+C ES No: 100291
Elkridge, MD 21075		

Max Reactions From RISA 3D:

(30) Envelope Joint Reactions							$\square \square$	
$1 \square$	Joint		X [k]	L.	$\mathrm{Y}[\mathrm{k}]$	LC	Z [k]	L...
1	N9	max	. 035	4	48	3	. 053	*
2		min	-. 035	2	-. 367	9	-. 072	!
3	N7	max	. 035	4	48	3	. 053	
4		min	-. 035	2	-. 367	9	-. 072	$!$
5	N10	max	. 057	8	. 484	5	. 113	
6		min	-. 057	6	-. 364	7	-. 095	!
7	N8	max	. 057	8	. 484	5	. 113	.
8		min	-. 057	6	-. 364	7	-. 095	!
9	N17	max	. 027	4	. 095	3	. 028	
10		min	-. 027	2	-. 049	9	-. 035	!
11	N18	max	. 021	8	. 095	5	. 033	
12		min	-. 021	6	-. 049	7	-. 026	$!$
13	N19	max	. 027	4	. 095	3	. 028	
14		min	-. 027	2	-. 049	9	-. 035	-
15	N20	max	. 021	8	. 095	5	. 033	
16		min	-. 021	6	-. 049	7	-. 026	!-

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{V} 1}:=57 \mathrm{lbf} \quad \mathrm{~F}_{\mathrm{V} 2}:=484 \mathrm{lbf} \quad \mathrm{~F}_{\mathrm{T}}:=113 \mathrm{lbf} \quad \mathrm{~F}_{\mathrm{V}}:=\sqrt{\mathrm{F}_{\mathrm{V} 1}^{2}+\mathrm{F}_{\mathrm{V} 2}^{2}}=487.3 \cdot \mathrm{lbf} \\
& \text { Interaction }:=\left(\frac{\mathrm{F}_{\mathrm{T}}}{\mathrm{~T}}\right)+\left(\frac{\mathrm{F}_{\mathrm{V}}}{\mathrm{~V}}\right)=0.41 \quad<1.0 ; \text { Thus OK }
\end{aligned}
$$

Hence the existing connections are adequate.

Adhesive Anchoring Systems

3.2.6 HIT-HY 70 Hybrid for Masonry Construction

Table 10-HIT-HY 70 allowable adhesive bond loads for threaded rods in the face of hollow brick 1, , , , 4, 5, 10

Nominal	Effective embedment in. $(\mathrm{mm})^{6}$	$\begin{aligned} & \text { Tension } \\ & \text { lb } \quad(\mathrm{kN})^{7,8} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Minimum edge } \\ & \text { distance } \mathrm{c}_{\mathrm{mn}} \\ & \text { in. } \quad(\mathrm{mm})^{9} \end{aligned}$	Load reduction factor @ $\mathrm{C}_{\text {min }}$	Shear	Edge distance ${ }^{6}$		
anchor diameter						Critical c_{a} in. (mm)	Minimum $\mathrm{C}_{\text {min }}$ in. (mm)	Load reduction factor @ $\mathrm{C}_{\text {min }}$
1/4	3-1/8 (79)	530 (2.4)	8 (203)	1.00	370 (1.6)	12 (304.8)	8 (203)	1.00
5/16		735 (3.3)			595 (2.6)			1.00
3/8		905 (4.0)			1,045 (4.7)			0.76
1/2		905 (4.0)			1,685 (7.5)			0.52

$N B+C$ ES		SK -1
YOB	7WAC050A	May 27, 2020 at 12:07 PM
100291	RENDERING	7WAC050A.r3d

Envelope Only Solution

$N B+C$ ES		SK -2
YOB		MWAC050A
	SHAPES	May 27, 2020 at $12: 08$ PM

Loads: BLC 1, DEAD Envelope Only Solution

$N B+C$ ES		SK -3
YOB		MWAC050A
	DEAD	May 27, 2020 at $12: 08$ PM
100291	7WAC050A.r3d	

$N B+C$ ES		SK -5
YOB		7WAC050A
	WIND Z	June 15,2020 at 2:33 PM
100291	7WAC050A.r3d	

Loads: BLC 2, WIND X
Envelope Only Solution

NB+C ES	7WAC050A WIND X	SK-4
YOB		May 27, 2020 at 12:09 PM
100291		7WAC050A.r3d

\qquad

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E.	Density[k/ft...	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	. 3	. 65	. 49	50	1.1	65	1.1
2	A36 Gr. 36	29000	11154	. 3	. 65	. 49	36	1.5	58	1.2
3	A572 Gr. 50	29000	11154	. 3	. 65	. 49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	. 3	. 65	. 527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	. 3	. 65	. 527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	. 3	. 65	. 49	35	1.6	60	1.2
7	A1085	29000	11154	. 3	. 65	. 49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rules	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	MP	PIPE_2.5	Beam	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
2	WM	L3X3X4	Beam	Single Angle	A36 Gr. 36	Typical	1.44	1.23	1.23	. 031
3	MP 2	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	. 627	. 627	1.25

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap...
1	N1	0	0	0	0	
2	N2	0	11	0	0	
3	N3	0	9	0	0	
4	N4	0	5	0	0	
5	N5	0	9	-. 333	0	
6	N6	0	5	-. 333	0	
7	N7	. 5	9	-. 333	0	
8	N8	. 5	5	-. 333	0	
9	N9	-. 5	9	-. 333	0	
10	N10	-. 5	5	-. 333	0	
11	N11	4	3	0	0	
12	N12	4	11	0	0	
13	N13	4	9	0	0	
14	N14	4	5	0	0	
15	N15	4	9	-. 333	0	
16	N16	4	5	-. 333	0	
17	N17	4.5	9	-. 333	0	
18	N18	4.5	5	-. 333	0	
19	N19	3.5	9	-. 333	0	
20	N20	3.5	5	-. 333	0	

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point
1	DEAD	DL		-1		6	
2	WIND X	WLX					6
3	WIND Z	WLZ					6

\qquad

Member Point Loads (BLC 1 : DEAD)

	Member Label	Direction	Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$	Location[ft,\%]
1	M 1	Y	-.074	11
2	M 1	Y	-.074	3
3	M 1	Y	-.074	1.5
4	M	Y	-.017	.5
5	M 6	Y	-.017	5.5
6	M 6	Y	-.045	8

Member Point Loads (BLC 2 : WIND X)

	Member Label	Direction		Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$
1	M1	X	.101	Location[tt,\%]
2	M1	X	.101	11
3	M1	X	.032	3
4	M6	X	.045	1.5
5	M6	X	.045	.5
6	M6	X	.027	5.5

Member Point Loads (BLC 3 : WIND Z)

	Member Label	Direction	Magnitude $[k, k-f t]$	Location $[\mathrm{tt}, \%]$
1	M1	Z	-.244	11
2	M1	Z	-.244	3
3	M1	Z	-.04	1.5
4	M6	Z	-.077	.5
5	M6	Z	-.077	5.5
6	M6	Z	-.042	8

Member Distributed Loads (BLC 2 : WIND X)

	Member Label	Direction	Start Magnitude $[\mathrm{k} / \mathrm{ft}, \ldots$	End Magnitude[k/ft,F...	Start Location $[\mathrm{ft}, \%]$
1	M1	X	.006	.006	0
2	M6	X	.005	.005	0

Member Distributed Loads (BLC 3 : WIND Z)

| Member Label | Direction | Start Magnitude[k/ft,... | End Magnitude[k/ft,F... | Start Location[tt,\%] |
| :---: | :---: | :---: | :---: | :---: | End Location[ft,\%]

Load Combinations

	Description	So..P.	S... BLCFac.	. BLC	Fac..	BLC	Fac..	BLCF	Fac.. ${ }^{\text {B }}$	BLCFac...										
1	ASCE ASD 1	Yes Y	DL 1																	
2	ASCE ASD 5 (a) (a)	Yes Y	DL 1	W...	. 6															
3	ASCE ASD 5 (a) (b)	Yes Y	DL 1	W...	. 6															
4	ASCE ASD 5 (a) (c)	Yes Y	DL 1	W...	-. 6															
5	ASCE ASD 5 (a) (d)	Yes Y	DL 1	W...	-. 6															
6	ASCE ASD 7 (a)	Yes Y	DL . 6	W...	. 6															
7	ASCE ASD 7 (b)	Yes Y	DL . 6	W...	. 6															
8	ASCE ASD 7 (c)	Yes Y	DL . 6	W...	-. 6															
9	ASCE ASD 7 (d)	Yes Y	DL . 6	W...	-. 6															

May 27, 2020
12:14 PM
Job Number \qquad

Envelope Joint Reactions

Joint			X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	. 057	8	. 484	5	. 113	3	0	9	0	9	0	9
2		min	-. 057	6	-. 364	7	-. 095	9	0	1	0	1	0	1
3	N10	max	. 057	8	. 484	5	. 113	3	0	9	0	9	0	9
4		min	-. 057	6	-. 364	7	-. 095	9	0	1	0	1	0	1
5	N7	max	. 035	4	. 48	3	. 053	7	0	9	0	9	0	9
6		min	-. 035	2	-. 367	9	-. 072	5	0	1	0	1	0	1
7	N9	max	. 035	4	. 48	3	. 053	7	0	9	0	9	0	9
8		min	-. 035	2	-. 367	9	-. 072	5	0	1	0	1	0	1
9	N17	max	. 027	4	. 095	3	. 028	7	0	9	0	9	0	9
10		min	-. 027	2	-. 049	9	-. 035	5	0	1	0	1	0	1
11	N19	max	. 027	4	. 095	3	. 028	7	0	9	0	9	0	9
12		min	-. 027	2	-. 049	9	-. 035	5	0	1	0	1	0	1
13	N18	max	. 021	8	. 095	5	. 033	3	0	9	0	9	0	9
14		min	-. 021	6	-. 049	7	-. 026	9	0	1	0	1	0	1
15	N20	max	. 021	8	. 095	5	. 033	3	0	9	0	9	0	9
16		min	-. 021	6	-. 049	7	-. 026	9	0	1	0	1	0	1
17	Totals:	max	. 279	8	. 409	5	. 44	7						
18		min	-. 279	2	. 245	6	-. 44	5						

Envelope AISC 14th(360-10): ASD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]LC Shear			Loc[ft]Dir LC Pnc/om				Pnt/om [...Mnyy/		Mnzz/o	Cb Eqn
1	M3	L3X3X4	. 236	. 5	5	. 050	0	z	5	30.362	31.042	1.123	2.499	1... H2-1
2	M2	L3X3X4	. 210	. 5	3	. 049	0	z	3	30.362	31.042	1.123	2.499	1... $\mathrm{H} 2-1$
3	M1	PIPE_2.5	. 164	4.927	5	. 017	3.094		9	12.508	33.743	2.393	2.393	1 H1-1b
4	M6	PIPE_2.0	. 064	2	5	. 007	. 5		9	9.924	21.377	1.245	1.245	1 H1-1b
5	M8	L3X3X4	. 047	. 5	5	. 010	0	z	5	30.362	31.042	1.123	2.499	1... $\mathrm{H} 2-1$
6	M7	L3X3X4	. 039	. 5	3	. 010	0	z	3	30.362	31.042	1.123	2.499	1... $\mathrm{H} 2-1$

Address:

301 Maple Ave W Vienna, Virginia 22180

ASCE 7 Hazards Report

Wind

Results:

Wind Speed:
10-year MRI
25-year MRI
50-year MRI
100-year MRI

Data Source:

Date Accessed:

115 Vmph
76 Vmph
84 Vmph
90 Vmph
96 Vmph
ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1-CC-4, incorporating errata of March 12, 2014

Wed May 272020

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2.
Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Ice

Results:

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
0.75 in.

15 F
30 mph
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Wed May 272020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

